Theoretical and Natural Science

- The Open Access Proceedings Series for Conferences


Theoretical and Natural Science

Vol. 34, 29 April 2024


Open Access | Article

Integrated study of dark matter and dark energy models

Haoyang Feng * 1
1 Wales College Secondary School

* Author to whom correspondence should be addressed.

Theoretical and Natural Science, Vol. 34, 162-171
Published 29 April 2024. © 2023 The Author(s). Published by EWA Publishing
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Citation Haoyang Feng. Integrated study of dark matter and dark energy models. TNS (2024) Vol. 34: 162-171. DOI: 10.54254/2753-8818/34/20241173.

Abstract

Dark matter and dark energy are used as two important concepts in cosmology to explain some of the observed phenomena in the universe. Dark matter is one of the most dominant constituents of the Universe, and it influences the structural formation of the Universe through gravity, including the formation and evolution of galaxies, clusters, and the large-scale structure of the Universe. Dark energy is believed to be one of the causes of the accelerated expansion of the Universe, and its presence explains the observed phenomenon of the accelerating rate of expansion of the Universe. Although their existence has not been directly observed, people understand through the study of the structure and evolution of the universe that they play an important role in the universe. This paper first introduces the background knowledge of dark matter and its related properties and explains the reasons why three types of models, namely WIMP, axion, and sterile neutrino, are candidates for dark matter in the light of existing observations. The paper then discusses the relevant properties of dark energy and analyses the mainstream dark energy models. For the cosmological constant Λ mode, the fine-tuning problem and cosmic coincidence problem it faces are analysed in detail. The evolution of the dark energy equation of state ω from the past ω>-1 to the present ω<-1 is then explained, and this is used to introduce the scalar field model involving dynamic, the Chaplygin gas model, the holographic dark energy model, and the interacting dark energy model.

Keywords

Dark matter, Dark energy, Model comparison, Non-standard models, Cosmological constant, Scalar fields

References

1. Caldwell, R., & Kamionkowski, M. (2009). Dark matter and dark energy. Nature, 458(7238), 587-589.

2. Zwicky, F. (1933). Die rotverschiebung von extragalaktischen nebeln. Helvetica Physica Acta, Vol. 6, p. 110-127, 6, 110-127.

3. Rubin, V. C., & Ford Jr, W. K. (1970). Rotation of the Andromeda nebula from a spectroscopic survey of emission regions. Astrophysical Journal, vol. 159, p. 379, 159, 379.

4. He, C. (1994). Gravitational lensing measurement of dark matter. Modern Physics Knowledge, (5), 26-29.

5. Arcadi, G., Dutra, M., Ghosh, P., Lindner, M., Mambrini, Y., Pierre, M., ... & Queiroz, F. S. (2018). The waning of the WIMP? A review of models, searches, and constraints. The European Physical Journal C, 78, 1-57.

6. Kolb, E. W., & Turner, M. S. (1990). The early universe addison-wesley. Redwood City, 69, 1-547.

7. He, Y., & Lin, W. B. (2016). Research progress of WIMP dark matter model. Astronomy Progress, 34(3), 287-311.

8. Kim, J. E., & Carosi, G. (2010). Axions and the strong C P problem. Reviews of Modern Physics, 82(1), 557.

9. Hook, A. (2019). TASI lectures on the strong CP problem and axions, PoS. arXiv preprint arXiv:1812.02669, 4.

10. Adams, C. B., Aggarwal, N., Agrawal, A., Balafendiev, R., Bartram, C., Baryakhtar, M., ... & Wooten, M. (2022). Axion dark matter. arXiv preprint arXiv:2203.14923.

11. Dodelson, S., & Widrow, L. M. (1994). Sterile neutrinos as dark matter. Physical Review Letters, 72(1), 17.

12. Shi, X., & Fuller, G. M. (1999). New dark matter candidate: Nonthermal sterile neutrinos. Physical Review Letters, 82(14), 2832.

13. Li, Y. F. (2015). Sterile neutrino. Modern Physics Knowledge, 6.

14. Adhikari, R., Agostini, M., Ky, N. A., Araki, T., Archidiacono, M., Bahr, M., ... & Zuber, K. (2017). A white paper on keV sterile neutrino dark matter. Journal of cosmology and astroparticle physics, 2017(01), 025-025.

15. Kusenko, A. (2009). Sterile neutrinos: the dark side of the light fermions. Physics Reports, 481(1-2), 1-28.

16. Boyarsky, A., Drewes, M., Lasserre, T., Mertens, S., & Ruchayskiy, O. (2019). Sterile neutrino dark matter. Progress in Particle and Nuclear Physics, 104, 1-45.

17. Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M., ... & Tonry, J. (1998). Observational evidence from supernovae for an accelerating universe and a cosmological constant. The astronomical journal, 116(3), 1009.

18. Kolb, E. W., & Turner, M. S. (1990). The early universe addison-wesley. Redwood City, 69, 1-547.

19. Weinberg, S. (1989). The cosmological constant problem. Reviews of modern physics, 61(1), 1.

20. Carroll, S. M. (2001). The cosmological constant. Living reviews in relativity, 4(1), 1-56.

21. Ratra, B., & Peebles, P. J. (1988). Cosmological consequences of a rolling homogeneous scalar field. Physical Review D, 37(12), 3406.

22. Carroll, S. M. (1998). Quintessence and the rest of the world: suppressing long-range interactions. Physical Review Letters, 81(15), 3067.

23. Caldwell, R. R. (2002). A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Physics Letters B, 545(1-2), 23-29.

24. Armendariz-Picon, C., Mukhanov, V., & Steinhardt, P. J. (2001). Essentials of k-essence. Physical Review D, 63(10), 103510.

25. Huterer, D., & Cooray, A. (2005). Uncorrelated estimates of dark energy evolution. Physical Review D, 71(2), 023506.

26. Riess, A. G., Strolger, L. G., Casertano, S., Ferguson, H. C., Mobasher, B., Gold, B., ... & Stern, D. (2007). New Hubble space telescope discoveries of type Ia supernovae at z≥ 1: narrowing constraints on the early behavior of dark energy. The Astrophysical Journal, 659(1), 98.

27. Feng, B., Wang, X., & Zhang, X. (2005). Dark energy constraints from the cosmic age and supernova. Physics Letters B, 607(1-2), 35-41.

28. Guo, Z. K., Piao, Y. S., Zhang, X., & Zhang, Y. Z. (2005). Cosmological evolution of a quintom model of dark energy. Physics Letters B, 608(3-4), 177-182.

29. Copeland, E. J., Sami, M., & Tsujikawa, S. (2006). Dynamics of dark energy. International Journal of Modern Physics D, 15(11), 1753-1935.

30. Wei, H., Cai, R. G., & Zeng, D. F. (2005). Hessence: a new view of quintom dark energy. Classical and Quantum Gravity, 22(16), 3189.

31. Zhao, W., & Zhang, Y. (2006). Quintom models with an equation of state crossing− 1. Physical Review D, 73(12), 123509.

32. Kamenshchik, A. Y., Moschella, U., & Pasquier, V. (2002). it Phys. Lett. B 511, 265 (2001); MC Bento, O. Bertolami, AA Sen. Phys. Rev. D, 66, 043507.

33. Bilić, N., Tupper, G. B., & Viollier, R. D. (2002). Unification of dark matter and dark energy: the inhomogeneous Chaplygin gas. Physics Letters B, 535(1-4), 17-21.

34. Bento, M. C., Bertolami, O., & Sen, A. A. (2002). Generalized Chaplygin gas as a scheme for Unification of Dark Energy and Dark Matter. arXiv preprint astro-ph/0210375.

35. Bento, M. C., Bertolami, O., & Sen, A. A. (2002). Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Physical Review D, 66(4), 043507.

36. Zhang, X., Wu, F. Q., & Zhang, J. (2006). New generalized Chaplygin gas as a scheme for unification of dark energy and dark matter. Journal of Cosmology and Astroparticle Physics, 2006(01), 003.

37. Li, Y. H., & Zhang, X. (2014). Large-scale stable interacting dark energy model: Cosmological perturbations and observational constraints. Physical Review D, 89(8), 083009.

38. Bousso, R. (2002). The holographic principle. Reviews of Modern Physics, 74(3), 825.

39. Fischler, W., & Susskind, L. (1998). Holography and cosmology. arXiv preprint hep-th/9806039.

40. Cohen, A. G., Kaplan, D. B., & Nelson, A. E. (1999). Effective field theory, black holes, and the cosmological constant. Physical Review Letters, 82(25), 4971.

41. Cohen, A. G., Kaplan, D. B., & Nelson, A. E. (1999). Effective field theory, black holes, and the cosmological constant. Physical Review Letters, 82(25), 4971.

42. Li, M. (2004). A model of holographic dark energy. Physics Letters B, 603(1-2), 1-5.

43. Wei, H., & Cai, R. G. (2008). A new model of agegraphic dark energy. Physics Letters B, 660(3), 113-117.

44. Gao, C., Wu, F., Chen, X., & Shen, Y. G. (2009). Holographic dark energy model from Ricci scalar curvature. Physical Review D, 79(4), 043511.

45. Simpson, F. (2007). An alternative approach to holographic dark energy. Journal of Cosmology and Astroparticle Physics, 2007(03), 016.

46. Zhang, J., Zhang, X., & Liu, H. (2007). Holographic dark energy in a cyclic universe. The European Physical Journal C, 52, 693-699.

47. Ellis, J., Kalara, S., Olive, K. A., & Wetterich, C. (1989). Density-dependent couplings and astrophysical bounds on light scalar particles. Physics Letters B, 228(2), 264-272.

48. Amendola, L. (2000). Coupled quintessence. Physical Review D, 62(4), 043511.

49. Szydłowski, M. (2006). Cosmological model with energy transfer. Physics Letters B, 632(1), 1-5.

50. Szydłowski, M., Stachowiak, T., & Wojtak, R. (2006). Towards testing interacting cosmology by distant supernovae. Physical Review D, 73(6), 063516.

51. Damour, T., & Polyakov, A. M. (1994). The string dilation and a least coupling principle. Nuclear Physics B, 423(2-3), 532-558.

52. Zhang, X., Wu, F. Q., & Zhang, J. (2006). New generalized Chaplygin gas as a scheme for unification of dark energy and dark matter. Journal of Cosmology and Astroparticle Physics, 2006(01), 003.

Data Availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors who publish this series agree to the following terms:

1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.

2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.

3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open Access Instruction).

Volume Title
Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
ISBN (Print)
978-1-83558-369-2
ISBN (Online)
978-1-83558-370-8
Published Date
29 April 2024
Series
Theoretical and Natural Science
ISSN (Print)
2753-8818
ISSN (Online)
2753-8826
DOI
10.54254/2753-8818/34/20241173
Copyright
29 April 2024
Open Access
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Copyright © 2023 EWA Publishing. Unless Otherwise Stated