Theoretical and Natural Science

- The Open Access Proceedings Series for Conferences


Theoretical and Natural Science

Vol. 19, 08 December 2023


Open Access | Article

Review of dark matter and detect dark matter using collider

Ning Yan * 1
1 York University

* Author to whom correspondence should be addressed.

Theoretical and Natural Science, Vol. 19, 90-101
Published 08 December 2023. © 2023 The Author(s). Published by EWA Publishing
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Citation Ning Yan. Review of dark matter and detect dark matter using collider. TNS (2023) Vol. 19: 90-101. DOI: 10.54254/2753-8818/19/20230503.

Abstract

This review study will give a brief introduction to dark matter, Large Hadron colliders (LHC), and circular electron-positron colliders(CEPC). The first part of the paper will discuss the fundamental properties of dark matter and the evidence for its existence. There will be a brief discussion of the theories used to explain dark matter. There will be three dark matter profiles and dark halo introductions. The basic configuration, ideas, and dark matter detection of LHC will then be covered in the study. The detection process includes missing momentum signals, bump hunting, and limiting the WIMP zone. The final section will describe CEPC's basic setup and its benefits for locating dark matter.

Keywords

dark matter, dark matter detection, LHC, CEPC.

References

1. NASA. (n.d.). Dark Energy, dark matter. NASA. Retrieved November 30, 2022, from https://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy

2. Bertone, G., & Hooper, D. (2018). History of dark matter. Reviews of Modern Physics, 90(4), 045002.

3. Lundmark, K. (1930). Über die Bestimmung der Entfernungen, Dimensionen, Massen und Dichtigkeit fur die nächstgelegenen anagalacktischen Sternsysteme. Meddelanden fran Lunds Astronomiska Observatorium Serie I, 125, 1-13.

4. Dark matter. CERN. (n.d.). Retrieved November 30, 2022, from https://home.cern/science/physics/dark-matter

5. Volders, L. M. J. S. (1959). Neutral hydrogen in M 33 and M 101. Bulletin of the Astronomical Institutes of the Netherlands, 14, 323.

6. Bosma, A. (1978). The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types (Doctoral dissertation, Rijksuniversiteit te Groningen.).

7. Rubin, V. C., Ford Jr, W. K., & Thonnard, N. (1978). Extended rotation curves of high-luminosity spiral galaxies. IV-Systematic dynamical properties, SA through SC. The Astrophysical Journal, 225, L107-L111.

8. Mario De Leo (CC BY-SA 4.0), adapted from Corbelli, E., &Salucci, P. 2000, MNRAS, 311, 44.

9. Vallée, J. P. (2005). The spiral arms and interarm separation of the Milky Way: An updated statistical study. The Astronomical Journal, 130(2), 569.

10. Clowe, D., Bradač, M., Gonzalez, A. H., Markevitch, M., Randall, S. W., Jones, C., & Zaritsky, D. (2006). A direct empirical proof of the existence of dark matter. The Astrophysical Journal, 648(2), L109.

11. Bertone, G., & Tait, T. M. (2018). A new era in the quest for dark matter. arXiv preprint arXiv:1810.01668.

12. Gunn, J. E., & Gott III, J. R. (1972). On the infall of matter into clusters of galaxies and some effects on their evolution. The Astrophysical Journal, 176, 1.

13. Navarro, J. F., Frenk, C. S., & White, S. D. (1997). A universal density profile from hierarchical clustering. The Astrophysical Journal, 490(2), 493.

14. Merritt, D., Graham, A. W., Moore, B., Diemand, J., & Terzić, B. (2006). Empirical models for dark matter halos. I. Nonparametric construction of density profiles and comparison with parametric models. The Astronomical Journal, 132(6), 2685.

15. Avila-Reese, V., Firmani, C., & Hernández, X. (1998). On the formation and evolution of disk galaxies: Cosmological initial conditions and the gravitational collapse. The Astrophysical Journal, 505(1), 37.

16. McGaugh, S. S., De Blok, W. J. G., Schombert, J. M., De Naray, R. K., & Kim, J. H. (2007). The rotation velocity attributable to dark matter at intermediate radii in disk galaxies. The Astrophysical Journal, 659(1), 149.

17. Zooming in on dark matter. Max-Planck-Gesellschaft. (2020, September 2). Retrieved November 30, 2022, from https://www.mpg.de/15312438/0831-ext0-064909-zooming-in-on-dark-matter

18. Gaitskell, R. J. (2004). Direct detection of dark matter. Annual Review of Nuclear and Particle Science, 54(1), 315-359.

19. Xiao, M., Xiao, X., Zhao, L., Cao, X., Chen, X., Chen, Y., ... & Zhu, Z. (2014). First dark matter search results from the PandaX-I experiment. Science China Physics, Mechanics & Astronomy, 57(11), 2024-2030.

20. Slatyer, T. R. (2018). Indirect detection of dark matter. Theoretical Advanced Study Institute in Elementary Particle Physics: anticipating the next discoveries in particle physics, 297-353.

21. Bertone, G. (Ed.). (2010). Particle dark matter: observations, models and searches. Cambridge University Press. pp.83-104.

22. Ellis, J., Flores, R. A., Freese, K., Ritz, S., Seckel, D., & Silk, J. (1988). Cosmic ray constraints on the annihilations of relic particles in the galactic halo. Physics Letters B, 214(3), 403-412.

23. Hooper, D. (2018). TASI lectures on indirect searches for dark matter. arXiv preprint arXiv:1812.02029.

24. Brüning, O., Burkhardt, H., & Myers, S. (2012). The large hadron collider. Progress in Particle and Nuclear Physics, 67(3), 705-734.

25. Evans, L. (2007). The large hadron collider. New Journal of Physics, 9(9), 335.

26. Herr, W., & Muratori, B. (2006). Concept of luminosity.

27. Myers, S., & Schnell, W. (1983). Preliminary performance estimates for a LEP proton collider (No. LHC-NOTE-1). SCAN-0008106.

28. Asner, A. M., Picasso, E., Baconnier, Y., Hilleret, N., Schmid, J., Schönbacher, H., Gobel, K., Weisse, E., Brandt, D., Poncet, A., Hagedorn, D., Vos, L., Henke, H., Garoby, R., Häbel, E., Evans, L. R., Bassetti, M., Fassò, A., Barbalat, O., … Laurent, J. M. (1990, January 29). A feasibility study of possible options. CERN Document Server. Retrieved October 20, 2022, from https://cdsweb.cern.ch/record/152775

29. Breaking new ground in the search for dark matter. CERN. (n.d.). Retrieved December 1, 2022, from https://home.cern/news/series/lhc-physics-ten/breaking-new-ground-search-dark-matter

30. Blinov, N., Krnjaic, G., & Tuckler, D. (2021). Characterizing dark matter signals with missing momentum experiments. Physical Review D, 103(3), 035030.

31. Kane, G., & Watson, S. (2008). Dark matter and LHC: What is the connection?. Modern Physics Letters A, 23(26), 2103-2123.

32. Aad, G., Abajyan, T., Abbott, B., Abdallah, J., Khalek, S. A., Abdelalim, A. A., ... & Bansil, H. S. (2012). Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Physics Letters B, 716(1), 1-29.

33. CEPC Study Group. (2018). CEPC conceptual design report: Volume 1-accelerator. arXiv preprint arXiv:1809.00285.

34. CEPC Study Group. (2018). CEPC Conceptual Design Report: Volume 2-Physics \& Detector. arXiv preprint arXiv:1811.10545.

35. Djouadi, A., Maiani, L., Moreau, G., Polosa, A., Quevillon, J., \& Riquer, V. (2013). The post-Higgs MSSM scenario: habemus MSSM?. The European Physical Journal C, 73(12), 1-10.

36. Fan, J., Reece, M., \& Wang, L. T. (2015). Precision natural SUSY at CEPC, FCC-ee, and ILC. Journal of High Energy Physics, 2015(8), 1-30.

37. Cao, Q. H., Huang, F. P., Xie, K. P., \& Zhang, X. (2018). Testing the electroweak phase transition in scalar extension models at lepton colliders. Chinese Physics C, 42(2), 023103.

38. Cai, C., Yu, Z. H., \& Zhang, H. H. (2017). CEPC precision of electroweak oblique parameters and weakly interacting dark matter: The fermionic case. Nuclear Physics B, 921, 181-210.

39. Low, M., \& Wang, L. T. (2014). Neutralino dark matter at 14 TeV and 100 TeV. Journal of High Energy Physics, 2014(8), 1-29.

Data Availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors who publish this series agree to the following terms:

1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.

2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.

3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open Access Instruction).

Volume Title
Proceedings of the 2nd International Conference on Computing Innovation and Applied Physics
ISBN (Print)
978-1-83558-203-9
ISBN (Online)
978-1-83558-204-6
Published Date
08 December 2023
Series
Theoretical and Natural Science
ISSN (Print)
2753-8818
ISSN (Online)
2753-8826
DOI
10.54254/2753-8818/19/20230503
Copyright
08 December 2023
Open Access
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Copyright © 2023 EWA Publishing. Unless Otherwise Stated